The technical and mechanical features are the same as for the mini vacuum cup holders with plunger valve described on the previous pages. Their distinctive feature is their threaded hexagonal bush, which allows them to be directly assembled to

$\phi 5$

Item	Force Kg	\mathbf{B}	\mathbf{C}	D \emptyset	\mathbf{E}	F \emptyset	\mathbf{L}	\mathbf{M}	For vacuum cup item	Weight g
$\mathbf{2 0 1 2 6 5}$	0.28	4.5	8.5	12	11	$G 3 / 8^{\prime \prime}$	88	2	011210	76.6
$\mathbf{2 0 1 5 6 5}$	0.44	4.5	8.5	15	12	$G 3 / 8^{\prime \prime}$	88	1	011510	76.7
$\mathbf{2 0 1 8 6 5}$	0.63	4.5	8.5	18	12	$G 3 / 8^{\prime \prime}$	88	1	011810	76.7

Note: The vacuum cups are not integral parts of the cup holders and, therefore, must be ordered separately.

Note: The force of the vacuum cups indicated in the table represents $1 / 3$ of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3 .
Transformation ratio: N (newton) $=\mathrm{Kg} \times 9.81$ (force of gravity)
inch $=\frac{\mathrm{mm}}{25.4} ;$ pounds $=\frac{\mathrm{g}}{453.6}=\frac{\mathrm{Kg}}{0.4536}$

VERSION 20 .. 65

Item	Force Kg	\mathbf{B}	\mathbf{C}	\mathbf{D} \emptyset	\mathbf{E}	F \emptyset	\mathbf{L}	\mathbf{M}	For vacuum cup item	Weight g
$\mathbf{2 0} \mathbf{2 0} \mathbf{6 5}$	0.78	5.5	8.5	20	12	$G 3 / 8^{\prime \prime}$	89	2	012010	76.8
$\mathbf{2 0} \mathbf{2 2} \mathbf{6 5}$	0.95	5.5	8.5	22	13	$G 3 / 8^{\prime \prime}$	90	1	012210	77.2

Note: The vacuum cups are not integral parts of the cup holders and, therefore, must be ordered separately.

Note: The force of the vacuum cups indicated in the table represents $1 / 3$ of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3 .

Item	Force Kg	\mathbf{B}	\mathbf{C}	\mathbf{D} \emptyset	\mathbf{E}	\mathbf{F} \emptyset	\mathbf{L}	For vacuum cup item	Weight g
$\mathbf{2 0 2 5 6 5}$	1.23	6	11	25	16	$G 3 / 8$ "	93	012515	80

Note: The vacuum cups are not integral parts of the cup holders and, therefore, must be ordered separately.

VERSION 203065

Item	Force Kg	\mathbf{B}	\mathbf{C}	\mathbf{D} \emptyset	\mathbf{E}	\mathbf{F} \emptyset	\mathbf{L}	For vacuum cup item	Weight \mathbf{g}
$\mathbf{2 0 3 0 6 5}$	1.76	7	11	30	17	$G 3 / 8^{\prime \prime}$	94	013015	82.7

Note: The vacuum cups are not integral parts of the cup holders and, therefore, must be ordered separately.

Item	Force Kg	B	C	$\begin{aligned} & \text { D } \\ & \emptyset \end{aligned}$	E	$\begin{aligned} & \mathbf{F} \\ & \emptyset \end{aligned}$	L	M	For vacuum cup item	Weight g
203565	2.40	7	11	35	16	G3/8"	93	2	013515	82.6
204065	3.14	7	11	40	18	G3/8"	95	0	014015	83.1

Note: The vacuum cups are not integral parts of the cup holders and, therefore, must be ordered separately.

